
N 8 9 - 26589
a .

A Heuristic Approach to Incremental and Reactive Scheduling

Jid6 B. Odubiyi and David R. Zoch

Ford Aerospace Corporation
Space Systems Engineering Operation

7375 Executive Place
Seabrook, MD 20706

Abstract

This paper describes a heuristic approach to incremental and
reactive scheduling. Incremental scheduling is the process of
modifying an existing schedule if the initial schedule does not
meet its stated initial goals. Modifications made to a schedule
during incremental scheduling typically consist of adding one or
more activities by re-scheduling existing activities. Reactive
scheduling is performed when changes need to be made to an
existing schedule due to uncertain or dynamic environments such
as changes in available resources or the occurrence of targets of
opportunity. Only minor changes are made during both incremental
and reactive scheduling because a goal of re-scheduling
procedures is to minimally impact the schedule.

A scheduling system generates a schedule in three phases. An
initial batch scheduling phase, an incremental scheduling phase
and a reactive scheduling phase. During the first phase, no
rescheduling is attempted. All user requests are submitted to the
scheduler and an initial schedule is created. During the second
phase, non-computationally complex strategies must be used since
the number of possible schedules that can be generated increases
exponentially with the number of requests. Since simple
strategies must be used for initial schedule creation, any
schedule can potentially be greatly improved through the use of
an incremental scheduling phase.

Reactive scheduling occurs in near real-time in response to the
occurrence of targets of opportunity. Consequently, a reactive
scheduler must be able to generate schedules within acceptable
time limits. Manual reactive scheduling is an inefficient
strategy, and automated exhaustive search techniques are
infeasible because of time limits.

This paper describes the heuristic search techniques employed by
the Request Oriented Scheduling Engine (ROSE), a prototype
generic scheduler (3) . Specifically, we describe heuristics that
efficiently approximate the cost of reaching a goal from a given
state and effective mechanisms for controlling search.

127
PRECEDING PAGE BLANK NOT FILMlED

Introduction

Scheduling the Tracking and Data Relay Satellite System’s (TDRSS)
communications‘ events and user preferences present the NASA-
GSFC’s Network Control Center/s personnel with a very complex
scheduling problem. The schedulers must deal with limited TDRSS
resources, such as antennas, ground equipment and communications
bandwidth. In addition to these resource constraints, the
scheduling requirements also have user constraints, such as TDRS
visibility of user spacecraft, as well as temporal and dynamic
(request placement with respect to other . scheduled requests)
constraints.

A sample request is shown in Figure 1 where a user of the Upper
Atmospheric Research Satellite (UARS) requests the NCC to
schedule a house-keeping activity for UARS 19 times, once every
80 minutes, and each request must start within a 40 minute time
window. In addition, each request must use a single access
antenna from TDRS-East for a period of 15 minutes and it should
be scheduled when UARS is in view of TDRS-East.

The scheduling of these requests is premised by the fact that any
instances of this generic request should be scheduled only if
alternate request instances in a generic request which performs
UARS house-keeping using TDRS-West, have not been scheduled. The
NCC personnel receive and process several hundreds of requests
with more complex requirements from several users on a weekly
basis. During the space station era users will generate thousands
of such requests.

The Request Oriented Scheduling Engine (ROSE) is a generic
scheduling software prototype which has successfully demonstrated
the scheduling of user requests in the scheduling of scientific
instrument operations for the Space Station distributed
scheduling environment, and the scheduling of user requests in
the NCC environment. The rest of this paper provides a brief
description of the ROSE scheduler, incremental and reactive
scheduling processes and the implementation of a hybrid search
algorithm to speed automated rescheduling activities.

THE PROBLEM

With thousands of requests to schedule, the initial batch
scheduling approach does not usually meet the user’s scheduling
goals. Also the initial schedule is sub-optimal due to the
necessity to use simple heuristics. ROSE provides tools to allow
the user to do re-scheduling by deleting or moving scheduled
requests, adding unscheduled requests, or relaxing requests’
constraints manually.

128

When re-scheduling involves a large number of requests, in order
to find a location for an unscheduled request, extensive search
of the attributes (i.e., constraints, resources requirements,
etc.) of scheduled requests must be performed. This step is
required in order to identify appropriate heuristics to improve
the search. Also, if the schedule is to be generated in near
real-time, the search algorithm must be efficient and fast enough
for the resulting schedule to be of any use. Therefore, an
automated incremental and reactive scheduling capability is
needed in ROSE.

ROSE - A Generic Scheduling Software System

The ROSE software prototype has been developed to provide NASA
customers in the Space Station distributed scheduling environment
with an automated mechanism for communicating their scheduling
requirements to NASA-Goddard Space Flight Center (NASA-GSFC) and
receiving their scheduled requests. In ROSE, the feasibility of
communicating user requests from remote locations (where
appropriate) to a scheduler is being explored. The scheduling
requirements are communicated to a NASA scheduler in a Flexible
Envelope Request Notation (FERN). This notation enables a user to
specify his/her requests with preferential constraints. ROSE/FERN
is described in more detail in [3] .

ROSE is a generic scheduler currently running on the Symbolics
computer workstation with the Genera 7.0 operating system and the
Common LISP language on the Symbolics computer workstation at the
NASA-GSFC in code 520. Figure 2 depicts the ROSE user interface.
The interface consists of several windows. The user executes many
of the ROSE commands by activating the menu items in the Commands
window. The NCC scheduling network window shows three users (GRO,
STS and UARS) in this example with the NCC as the scheduler.
Generic requests from the users to the schedulers are monitored
and presented in a scrollable window, titled "Real-Time Message
Monitoring".

Figure 2 also shows a day's schedule in the window titled
"Timeline of Scheduled Requests". Scheduled requests are
displayed as unshaded rectangular boxes along a timeline. The
names of the user or campaign are displayed to the left of the
corresponding scheduled requests. More information about each
scheduled requests can be displayed, and the parameters of the
request can be modified through the interface. Below the requests
in Figure 2 in shaded rectangles is a sample of TDRS's visibility
constraint. The first row of shaded rectangles displays the time
windows when UARS is in view of the TDRS-West antenna, while the

129

' I

n e x t row d e p i c t s when t h e same s p a c e c r a f t i s i n v iew o f T D R S - E a s t
a n t e n n a . T h e bo t tom r i g h t c o r n e r window d i s p l a y s a l i s t o f
u n s c h e d u l e d r e q u e s t s . The window i s s c r o l l a b l e , and t h e u s e r has
t h e o p t i o n t o s c r o l l t h e window f o r a l i s t of o t h e r u n s c h e d u l e d
r e q u e s t s . T h e u s e r c a n a l s o mouse each r e q u e s t t o o b t a i n a
d e t a i l e d i n f o r m a t i o n a b o u t t h e r e q u e s t . ROSE has many f e a t u r e s
t h a t e n a b l e t h e u s e r t o d i s p l a y i n f o r m a t i o n a b o u t s c h e d u l e s ,
r e q u e s t s and r e s o u r c e u s a g e .

Message Class: 1
Request Priority: 3.4

Schedule as soon as possible
Schedule request 19 t imes every 0:80:00. Window-size= 0:40:00

Resource Envelope Phases:

Duration: 15 minutes
SA-EAST 1

Temporal Constraints:

EXCLUDING UARS-ENG-TDW2[II
DURING *UARS-UA'J-TDE*

I S t a r t Time: 00:80:00 End Time: 00:00:00

FIGURE 1. A Sample User's Generic Request

130

I

C
C

C
6

C

.
4
r

I

2
r -
A

I Y Y

W
V tu
rt
L

S
-.-' p.'
H

L
W
ln
3

w
v,
G cr

c%
w
tr:
3

H
LL

131

Re-Scheduling Strategies to Meet Scheduling Goals

ROSE is a generic scheduler, and it has been developed so that
the user can generate schedules with different scheduling goals.
When the initial schedule does not meet its goal, the scheduling
software, (i.e. ROSE) may take one or more of the following
conflict resolution strategies.

- Relax the requirements of unscheduled requests

- Overbook certain resources

- Relax the requirements of scheduled requests or
de-allocate certain resources

- Acquire additional resources from another scheduler in
a distributed scheduling architecture

- Implement an Incremental Scheduling strategy

- Implement a Reactive Scheduling strategy which
i n c o r p o r a t e s one o r more of t h e c o u r s e s of a c t i o n above

In this paper, we only describe the incremental and reactive
scheduling strategies for re-scheduling.

Scheduling Goals

A user‘s scheduling goals can take several forms, for instance:

- Create a schedule within the time limit of T hours.

- Schedule all requests above priority N

- Reserve X% of resource R during time T1 T2
- Schedule as many requests as possible

With the scheduling goal (s) identified, the ROSE software
generates a plan as to which actions to take and in what order,
and attempts to generate a schedule that meets the user’s
goal (s) . For example, if the user’s goal is to schedule as many
requests as possible, the plan may include a step to relax the
resource requirements of all requests. Figure 3 depicts a process
flow chart used in ROSE for incremental scheduling. ROSE applies
each strategy in the plan to the initial schedule until either
the user’s goals are met or the plan is exhausted.

132

INITIAL SCHEDULE
a -

NO b

FIGURE 3. A Frocess Flow Chart f o r an Incremental Scheduling Strategy

.

RE-SCHEDULE
USING NEXT
STRATEGY
IN PLAN

Reactive Scheduling

When an unexpected occurrence of some events triggers the need
for replanning, ROSE provides the capabilities to apply the
opportunistic scheduling procedure diagrammed in Figure 4. Re-
scheduling is performed by adding, moving or deleting requests
until the effects of the impacts are eliminated.

Reactive scheduling is used to modify a schedule already in use.
Therefore, conflict resolution strategies which are valid in
incremental scheduling may not be applicable for reactive
scheduling. For -example,. if a week’s schedule already in use
requires reactive scheduling at mid-week (i.e. Wednesday), then
any requests prior to Wednesday cannot be moved. In other words,
anything in the past cannot be moved, and no requests can be
scheduled prior to Wednesday. In incremental scheduling, the
scheduling system focusses its attention on re-scheduling
existing requests in order to accommodate additional requests. In
reactive scheduling, however, the scheduler must consider
alternative strategies, such as relaxing the requirements of
requests in order to minimally impact the schedule. Still, the
goal in reactive scheduling is to minimally impact the rest of
the schedule.

133

TRY RELAXING REQUIREMENTS

I A v c c
I I I

I I RE-SCHEDULE
(ADD, MOVE, DELETE)

I L-l <' PACT

\ / S I

. --
NO (IMPACTS > I

FIGURE 4. A Process Flow Chart for a Reactive Scheduling Strategy

Heuristics for Efficient Re-Scheduling

In the field of Artificial Intelligence, several researchers have
focussed on developing efficient search techniques for complex
mathematically intractable problems. Simon (1962) proposed the
"Hierarchical" approach during search by planning at different
levels of abstraction. In 1975, Sacerdoti proposed the "Least
Commitment" approach which suggests delaying any decision making
as much as possible until most of the facts are known and thereby
reducing the amount of backtracking. In 1979, Hayes-Roth proposed
the "Opportunistic Reasoning" approach by focussing search in
highly constrained areas or areas of highest certainty.
Dependency directed backtracking is another popular approach
employed in searching to reduce the search space of states, Mark
S. Fox (7) research efforts on constraint-directed reasoning
provides several approaches to reducing the amount of search
required in planning. This paper applies a hybrid approach by
combining the generate and test problem solving method and the A*
algorithm to search the problem space for a solution to a re-
scheduling problem.

134

Implementation of a Heuristic for Efficient Re-Scheduling

We have implemented a hybrid algorithm similar to the A* (Best-
first search) algorithm to provide effective search during the
re-scheduling process.

Figure 5 shows a directed graph of the search space for re-
scheduling in the ROSE scheduling software system. The problem
space is developed from the steps involved in re-scheduling in
ROSE as described earlier for Figure 2.

Our algorithm searches a directed graph in which each node
represents a state in the problem space. It is used to find a
minimal-cost overall path or any other path as quickly as
possible. In ROSE, the initial state is the initial batch
schedule and a request to be scheduled; a goal state is reached
when the unscheduled request is scheduled, and no existing
request violates any of its resource requirements or temporal or
dynamic constraints. The intermediate states consists of the
possible states between the initial state and a goal state.

To accomplish the objective of going from the initial state to
the goal state in Figure 5, we employ the generate and test
problem solving strategy to generate the rules to guide possible
moves. These rules are described in the steps below:

Step 1. Start at level 0 and select an unscheduled request.

Step 2. Generate a set of start times and assign ratings to
how good the possible locations where the request can be
scheduled are. Good locations are those where the minimum
number of constraints are violated and the minimum number
and amount of resources are required.

Step 3. Schedule this request in a location where it is
constrained the least, either by a resource
or a dynamic constraint. Break ties by selecting the
location with the earliest time along the timeline. A
location with a missing resource is preferred over
another location with a violated dynamic constraint.
A temporal constraint must not be violated. This step
will usually invalidate the current schedule.

Step 4. Create a window around all the requests overlapped by the
current request, and identify any such requests as
possible candidates to be moved. The local goal is to
move one or more requests and re-schedule them elsewhere
to make the schedule within this window valid.

135

VERIFYSCHEDULE

/ I \

LEVEL
0

LEVEL
5

FIGURE 5. A SEARCH SPACE FOR RE-SCHEDULING IN ROSE

136

Step 5. Move an overlapped request within the window. Go to
Step 2. Avoid generating any loops by not moving a
request more than once.

Step 6. Determine the goodness of a schedule by tallying and
evaluating the amount and number of overused resources
and the number of dynamic constraints violated by the
unscheduled requests

Step 7. Terminate the search at a pre-set time corresponding to
the time it takes to reach a certain number of branching
and/or depth factor, or until a solution is reached.

Step 8. Display the llbestll solution and ask the user if he/she
wishes to continue.

Step 9. If the user wishes to continue, attempt to schedule
the remaining unscheduled requests.

After establishing the rules that guide acceptable procedures for
rescheduling, we are ready to apply our algorithm. To apply this
algorithm, we develop an evaluation function, ff which estimates
the relative merit or cost of continuing a search from a given
state after applying a rule. The evaluation function is a cost
function which must bef designed to ?estimate the remaining length
of a path between a node n and the goal node. It is used to set
up the order as to which nodes to consider during a search such
that the goal is reached with the minimum number of steps.

Application of the A* Algorithm

The problem space consists of nodes (shown in Figure 5), and
these nodes fall into two categories: OPEN and CLOSED. OPEN is a
list of nodes containing the nodes to which the heuristic
evaluation function have been applied, but for which their
successor nodes have not been generated. The nodes in the list
are sorted in a priority sequence such that the highest priority
is assigned to the node for which the value returned by the
heuristic evaluation function is most promising. The CLOSED list
contains the nodes with non-promising values for the evaluation
function.

Function f' has two components, a g component and an h'
component.

f' (successor node) = g(successor node) + cost to new node
or f' (successor node) = g(successor node) + h' (successor node)

137

where

and

the lowest f'.

g(successor node) = g(best node) + h, (successor node)

a best node is defined as a node on OPEN list of nodes with

The g component is defined as the measure of the cost of getting
from the initial state to the current state. It is the sum of the
costs of applying the evaluation function along the best path
leading to the current node. Function h' returns an estimate of
the additional cost of getting to the goal node from the current
node. Since h, represents cost, low values for h' lead to good
nodes. Implementing the functions described above enables the re-
scheduling functions to search and reach the goal by manipulating
the list of nodes in the OPEN and CLOSED lists.

Since the only action taken at each step is to re-schedule an
existing request, the cost of going from one node to its
successor node (h,) is a constant. If different actions were
taken at different nodes (for instance, relaxation and
deletions), the h' function will not be constant.

Another Approach to Speed Search During Re-scheduling

The AO* or the AND/OR graph can be used to represent search
strategies by decomposing a problem into subproblems. This allows
for the generation of alternative solutions to the problem. The
initial problem corresponds to the root node of the graph. At an
AND node, all the successor nodes must be solved to obtain a
solution for that AND node. However, at an OR node, only one of
the children nodes must be solved. It is not necessary to
generate a solution for more than one node.

Applying this problem solving strategy to searching the search
space in Figure 5, it means that in locations where more than one
scheduled request must be moved, all the scheduled requests that
need to be moved must be moved in parallel until the schedule in
a local region becomes valid. This action requires more knowledge
of multiple requests. With more knowledge of each requests moved,
the amount of search required is reduced, and solution can be
obtained at a smaller cost than with the A* algorithm.

Future Work in Automated Re-Scheduling for ROSE

In the future, we plan to explore the application of assumption-
based or justification-based truth maintenance system concepts to

138

evaluate their effectiveness in helping to repair invalid
schedules generated during re-scheduling. Also, due to the
extensive amount of search required, and since we want to limit
back-tracking while the scheduler is in search of a goal, some
machine learning paradigms such as, learning from experience can
speed the re-scheduling time. Also the effectiveness of the
application of neural network algorithms in re-scheduling will be
explored.

I

The effects automating other conflict resolution strategies, such
as overbooking certain resources, acquiring additional resources
from other schedulers in a distributed scheduling architecture
will be employed.

CONCLUSION

Quoting Raj Reddy's [6], fourth and fifth rules of Artificial
Intelligence, "Search compensates for lack of knowledge" and
"Knowledge eliminates the need for search", these statements
apply in many problem solving efforts, specifically when solving
planning problems. The amount of search required in the heuristic
described above can be reduced s,ignificantly with more knowledge
of the constraints. With a better knowledge of the constraints,
the AO* search heuristic can provide a faster solution and a
shorter path search than the technique described in this paper.
According to Mark Fox (71, scheduling is not yet a science, it is
still an art. As a result efficient problem solving techniques
must be explored to improve search and reduce re-scheduling time.
This paper presents our attempt at improving the time required
for automatic re-scheduling in the Space Station and the TDRSS
Network Control Center environment. We employed a hybrid problem
solving technique to reduce automated re-scheduling time. Given
the knowledge of the problem space, the hybrid problem solving
approach described here is efficient for re-scheduling.

Bibliography

1. Dean, Thomas, Planning Paradigms, Brown University, Department
of Computer Science, Providence, R.I. 02912.

2. Rich, Elaine, Artificial Intelligence, The University of Texas
at Austin, McGraw-Hill Book Company, N.Y., 1983.

3. Zoch, David and Hall, Gardiner, 1988, Integrated Resource
Scheduling In A Distributed Environment, Ford Aerospace
Corporation, 7375 Executive Place, Seabrook, MD 20706.

139

4. Tanimoto, Steven L. The Elements of Artificial Intelligence,
Department of Computer Science, FR-35, University of Washington,
Seattle Washington, Computer Science Press, 1987.

5. Dougherty, E. R., and Giardina, C. R., Mathematical Methods
for Artificial Intelligence and Autonomous Systems, Prentice
Hall, Englewood Cliffs, New Jersey 07632, 1988.

6. Reddy, Raj, (1988), Foundations and Grand Challenges of
Artificial Intelligence, AI Magazine, Winter 1988, pp. 9-21.

7. Fox, S. M., (1987), Constraint Directed Search: A Case Study
of Job-Shop Scheduling, Morgan Kaufmann Publishers, Inc. Los
Altos, California.

8. Minasi, Mark, (1989), A Final Look at Simple Search, AI
Expert, February 1989, pp. 15-20.

9. GSFC Code 522, Software and Automated Systems Branch, User's
Guide for the Flexible Envelope Request Notation (FERN), Schedule
Integration Requirements Study, SEAS Task 29-1000, January 1989

10. GSFC Code 522, Software and Automated Systems Branch, User's
Guide for the Request Oriented Scheduling Engine (ROSE),
Integrated Resource Scheduling (IRS) , SEAS Task 29-1000, January
1989

11. GSFC Code 522, Software and Automated Systems Branch,
Schedule Integration Requirements Study, Final Report, SEAS Task
29-1000 January 1989.

Acknowledgements

We would like to thank Nancy Goodman, Larry Hull, Mike Tong and
other staff members of NASA-GSFC Code 522 for their support in
the development of ROSE.

140

